Neuroinflammation in Temporal Lobe Epilepsy Measured Using Positron Emission Tomographic Imaging of Translocator Protein.

نویسندگان

  • Leah D Gershen
  • Paolo Zanotti-Fregonara
  • Irene H Dustin
  • Jeih-San Liow
  • Jussi Hirvonen
  • William C Kreisl
  • Kimberly J Jenko
  • Sara K Inati
  • Masahiro Fujita
  • Cheryl L Morse
  • Chad Brouwer
  • Jinsoo S Hong
  • Victor W Pike
  • Sami S Zoghbi
  • Robert B Innis
  • William H Theodore
چکیده

IMPORTANCE Neuroinflammation may play a role in epilepsy. Translocator protein 18 kDa (TSPO), a biomarker of neuroinflammation, is overexpressed on activated microglia and reactive astrocytes. A preliminary positron emission tomographic (PET) imaging study using carbon 11 ([11C])-labeled PBR28 in patients with temporal lobe epilepsy (TLE) found increased TSPO ipsilateral to seizure foci. Full quantitation of TSPO in vivo is needed to detect widespread inflammation in the epileptic brain. OBJECTIVES To determine whether patients with TLE have widespread TSPO overexpression using [11C]PBR28 PET imaging, and to replicate relative ipsilateral TSPO increases in patients with TLE using [11C]PBR28 and another TSPO radioligand, [11C]DPA-713. DESIGN, SETTING, AND PARTICIPANTS In a cohort study from March 2009 through September 2013 at the Clinical Epilepsy Section of the National Institute of Neurological Disorders and Stroke, participants underwent brain PET and a subset had concurrent arterial sampling. Twenty-three patients with TLE and 11 age-matched controls were scanned with [11C]PBR28, and 8 patients and 7 controls were scanned with [11C]DPA-713. Patients with TLE had unilateral temporal seizure foci based on ictal electroencephalography and structural magnetic resonance imaging. Participants with homozygous low-affinity TSPO binding were excluded. MAIN OUTCOMES AND MEASURES The [11C]PBR28 distribution volume (VT) corrected for free fraction (fP) was measured in patients with TLE and controls using FreeSurfer software and T1-weighted magnetic resonance imaging for anatomical localization of bilateral temporal and extratemporal regions. Side-to-side asymmetry in patients with TLE was calculated as the ratio of ipsilateral to contralateral [11C]PBR28 and [11C]DPA-713 standardized uptake values from temporal regions. RESULTS The [11C]PBR28 VT to fp ratio was higher in patients with TLE than in controls for all ipsilateral temporal regions (27%-42%; P < .05) and in contralateral hippocampus, amygdala, and temporal pole (approximately 30%-32%; P < .05). Individually, 12 patients, 10 with mesial temporal sclerosis, had asymmetrically increased hippocampal [11C]PBR28 uptake exceeding the 95% confidence interval of the controls. Binding of [11C]PBR28 was increased significantly in thalamus. Relative [11C]PBR28 and [11C]DPA-713 uptakes were higher ipsilateral than contralateral to seizure foci in patients with TLE ([11C]PBR28: 2%-6%; [11C]DPA-713: 4%-9%). Asymmetry of [11C]DPA-713 was greater than that of [11C]PBR28 (F = 29.4; P = .001). CONCLUSIONS AND RELEVANCE Binding of TSPO is increased both ipsilateral and contralateral to seizure foci in patients with TLE, suggesting ongoing inflammation. Anti-inflammatory therapy may play a role in treating drug-resistant epilepsy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positron Emission Tomography Imaging of Neuroinflammation in Multiple Sclerosis with a Second Generation Translocator Protein PET Radioligand

This thesis describes a new approach for molecular imaging of neuroinflammation in Multiple Sclerosis (MS). My aim was to use the 2 generation TSPO radioligand FPBR111 to explore the potential of Positron Emission Tomography (PET) targeting the 18-kDa Translocator Protein (TSPO), as an in vivo biomarker of activated microglia in MS patients. This thesis addresses three research objectives. Firs...

متن کامل

Identification of brain regions predicting epileptogenesis by serial [18F]GE-180 positron emission tomography imaging of neuroinflammation in a rat model of temporal lobe epilepsy

Excessive activation of inflammatory signaling pathways seems to be a hallmark of epileptogenesis. Positron emission tomography (PET) allows in vivo detection of brain inflammation with spatial information and opportunities for longitudinal follow-up scanning protocols. Here, we assessed whether molecular imaging of the 18 kDa translocator protein (TSPO) can serve as a biomarker for the develop...

متن کامل

Imaging of neuroinflammation in Alzheimer's disease, multiple sclerosis and stroke: Recent developments in positron emission tomography.

Neuroinflammation is thought to play a pivotal role in many diseases affecting the brain, including Alzheimer's disease, multiple sclerosis and stroke. Neuroinflammation is characterised predominantly by microglial activation, which can be visualised using positron emission tomography (PET). Traditionally, translocator protein 18kDa (TSPO) is the target for imaging of neuroinflammation using PE...

متن کامل

P 89: Reduction of Neuroinflammation in Epilepsy by Using Stem Cells Derived Astrocytes

Epilepsy is neurological disorders that afflict many people around the world with a higher prevalence rate in children and in low income countries. Temporal lobe epilepsy (TLE) is result from hippocampal sclerosis is a neurological disorder with difficult treatment. Stem cells can transform into any type of cells such as glial cells, consequently stem cells can use for medical treatment. Stem c...

متن کامل

Accurate prediction of postoperative outcome in mesial temporal lobe epilepsy: a study using positron emission tomography with 18fluorodeoxyglucose.

BACKGROUND Recent studies suggest that positron emission tomography may be a reliable predictive indicator of clinical outcome following surgical treatment for epilepsy. OBJECTIVE We evaluated 30 patients with documented medial temporal lobe epilepsy to determine if prediction of postoperative outcome is improved with the use of positron emission tomography with (18)fluorodeoxyglucose. PATI...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JAMA neurology

دوره 72 8  شماره 

صفحات  -

تاریخ انتشار 2015